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ABSTRACT

A theoretical and experimental study is presented for determining
the steady-state frequency response of laterally excited truncated cones
and cylinders in a low to moderate frequency range. The theoretical results
are formulated in terms of forward transmission matrices, although
relationships are reviewed which allow application of the results for
impedance or admittance formulations as well. Expressions for the
4 X 4 matrices of transmission for coupled bending-shear displacements
are developed by means of the membrane theory of thin shells. The
results are then applied to the case of laterally excited shells which sup-
port a rigid top mass. Input and transfer pseudoimpedances are calculated
and compared with experimental observations for 30° and 15° cones and a
cylinder. Overall comparison of the results indicates that the membrane
theory provides a reasonable approximation for determining response
characteristics, but some definite deficiencies remain unexplained. A

digital computer program is included for computing all required results.
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NOMENCLATURE

major base radius of cone

submatrices of forward transmission matrix

minor base radius of cone

shell elastic modulus

generalized input and output force vectors, respectively
shell shear modulus

shell wall thickness

mass moment of inertia of supported mass about axis
through center of mass

net moment on a cross section

membrane stress resultants

net lateral shearing force on a cross section

coordinates of point on cone surface (s is dimensional)
slant length of truncated cone

local axial, tangential, and radial displacements of shell
middle surface--these displacements lie parallel and

perpendicular to the shell generating surface.

integrated axial, lateral, and radial displacements,
respectively

net axial, lateral, and radial displacements, respectively
generalized input and output velocity vectors, respectively
nondimensional coordinates of point cylinder surface
denotes a velocity for indicated displacement

semivertex angle for cones
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iy 7ij

elements of forward transmission matrix for velocities
elements of forward transmission matrix for displacements
geometric ratio for truncated cones

offset of center of supported mass from plane including
upper weld circle

angular rotation of a cross section

Poisson's ratio for shell

. . . s .
nondimensional cone coordinate (§ = Py sina)

shell mass density
elements of conversion matrices
circular frequency

nondimensional frequency parameter

vii



INTRODUCTION

Within the last several years, steady-state frequency response
methods have become increasingly popular for the description of dynamic
behavior of linear mechanical systems. Impedance, admittance (mobility),
and rearward and forward transmission methods all fall into this category
of analysis. Basically, all these methods are similar in that they envision
a mechanical component which possesses terminals that identify the position
and direction of all external forces applied to the component and the cor-
responding velocities resulting from the application of those forces. The
component is considered to be a ''black box' whose character is determined
in terms of the behavior at the accessible terminals. The methods can be
applied to components that have either discrete or distributed properties,
and complex systems can readily be synthesized into elements which can
represent various structural, acoustical, electrical, etc., components.

Because of the nature of multi~-degree of freedom and distributed
components of complex systems, the above methods lend themselves
immediately to matrix notation. Thus, a component can be described in
terms of its impedance, admittance (mobility), or forward or rearward
transmission matrix, whose elements are usually frequency dependent.
The use of truncated conical or cylindrical shells as components of a
complex structure such as a space vehicle falls into this category.

The purpose of the present research program has been to determine
the frequency dependent matrices which describe truncated conical and

cylindrical shells so that they can be used as components for the application



of the above methods to the analysis of complex mechanical space vehicle
systems. This has been achieved in terms of transmission matrices for
axisymmetric modes in the first half of the program, and the results of
this work have already been reportedl.

The second half of the present program has dealt with lateral bending
responses of truncated cones and cylinders so that more complicated matrix
representations result from the additional variables required to describe
the complete response. The purpose of this report is to present the work
accomplished under this final phase of the program. Again the character-
istics of truncated conical and cylindric‘al shells have been developed in
terms of transmission (specifically forward transmission) matrices.
However, in order to facilitate using the results in analyses incorporating
impedance or mobility methods, we begin with a discussion of the relation-
ship between the various methods that have been mentioned. At the same
time, a summary of the most recently accepted definitions utilized in the
various methods is presented.

The approach used for the determination of the transmission matrices
of truncated conical and cylindrical shells subject to lateral bending is
similar to that used in the earlier work for longitudinal excitationl.
Membrane theory of thin shells is used to derive expressions for the
elements of a 4 X 4 transmission matrix. For the case of truncated
cones, the govel;ning equations must be integrated numerically, while,
for the cylinder, the governing equations are integrated directly; but

extensive numerical computations are still required to obtain the matrix



elements. A computer program has been developed for this purpose and is
included in the results. Experimental results from measurements of
pseudoimpedances of several specimens are then compared with predicted
results.

It should be mentioned that the present analysis is basically the
same as that which has been reported in an earlier progress reportZ,
However, the notation and arrangement of the analysis have been changed
considerably so that they correspond with results and definitions reported
in the recent work described in the next section.

RELATIONSHIPS BETWEEN IMPEDANCE, ADMITTANCE,
AND TRANSMISSION MATRICES

Definitions of the various aspects of the several methods of response
analysis, as well as the relationships between the matrices which charac-
terize the components used for each method, have recently been described

4 . ) .
3, For convenience, a brief review of these

quite vividly by Rubin
descriptions will be presented here; however, the referenced papers
should be consulted for complete details. We emphasize that these rela-
tionships then allow conversion of the results to be presented for cones and
cylinders from transmission to either impedance or admittance matrices.

Although Rubin has described analyses which employ rectangular matrices?,

here we will consider only square matrices4.

We introduce the notation:
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Fi=9%, ¢ Y =y V12 [ (1)
\;an L Vin J

as generalized force and velocity vectors, respectively, applied at the input
to a '"black box' component. The generalized forces ‘;ij can be forces,
moments, etc., while the velocities Vij can be translational, rotational,

etc., velocities. FEach is understood to represent a steady-state complex

vector. Correspondingly, at the output terminals, we have

r7’.21 V21
Fo=2 %y Va=4 v (2)
_ % V2n

Now, with these definitions, the following partitioned matrix forms

can be introduced:

2 H G| [ F; (3)
} = < ? (Admittance)

\ = < } (Impedance) (4)

> = 1 } (Rearward Transmission) (5)
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These forms are identical to Eqs. (20-23) of Reference 4, except for the
bars on the notation of Fy, Fp, V) and V,. For each case, the partitioned
matrix in brackets represents an admittance, impedance, rearward trans-
mission, or forward transmission matrix, respectively, all for the same
'"black box'' component. We note one caution in the use of the forms. The
force FZ used in the transmission matrices is the negative of the _]::‘2 in the
admittance and impedance forms. For transmission matrices, FZ is the
force applied by the output terminal 2 of the '"black box, ' while, for
admittance and impedance matrices, FZ is the force applied to terminal 2
of the '"black box."

The relationships between the various forms above are shown in
Figure 1 which has been taken directly from Reference 4. Row 1) shows
the transformation from the admittance matrix to the other three forms.
Similarly, rows 2), 3), and 4) show transformations beginning with the
forward transmission, rearward transmission, and impedance matrices,
respectively. All matrices on the indicated rows are square and have
order n. The great utility of the transformations in Figure 1 becomes
immediately obvious. The characteristic matrix of any component can be
determined in terms of the form which is the most convenient, but can

then be transformed to any of the other formulations.
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Figure 1. Relationships Among Admittance, Transmission,
And I mpedance Matrices



Mechanical impedance and admittance methods have been utilized
for a longer period of time than the others, and, as a result, more litera-
ture is available on these methods. Reference lists of much of this litera-

1,2

ture are given in early reports of the present program A very lucid

description of applying mechanical impedance and admittance methods has
been given by O'Hara®. He is particularly careful in pointing out the proper
methods that must be utilized in measuring impedances and mobilities,
which are the various elements of the impedance and admittance matrices,
respectively. Diagonal elements are referred to as driving point, direct,
or self~impedances or admittances, while off-diagonal elements are called
transfer, cross, or mutual impedances or admittances. He further defines
pseudoimpedance as the ratio of force input at some point of a structure to
the velocity at some point. If the points are the same, driving point
pseudoimpedance results, while, if the points are different, a transfer
pseudoimpedance results. *

Additional recent examples of applying the impedance method in

3,4 has

complex structures have been reported by On6, while Rubin
described the use of all of the above methods. Rubin emphasizes the

utility of the transmission matrix methods whereby the transmission matrix
of a complex structure is formulated simply by multiplying in tandem all

the matrices of the individual components--a procedure which is well

suited to digital computation. Thus, the results of the present work,

*Note that with this definition, driving point and transfer pseudoimpedances
were determined for cones and cylinders under longitudinal excitation in
our earlier work, rather than driving point and transfer impedances as
was indicated.



which are formulated in terms of forward transmission matrices, can be
transformed to whatever method may be preferred, while the details of

applying these methods to complex structures may be obtained from the

references cited.

FORWARD TRANSMISSION MATRICES FOR COUPLED
BENDING-SHEAR VIBRATIONS OF TRUNCATED
CONICAL SHELLS
General Discussion
During the lateral vibration of a beam-type structural element, there
will be, in general, a bending moment and a shearing force transmitted
through each cross section, and the element will exhibit a coupled
bending and shearing deformation. Due to this coupling, the structural
element cannot be adequately described by a set of four-pole parameters
as in the simpler case of longitudinal or torsional vibrations of the
element!. In general, for lateral vibrations of a linear, elastic, beam-
type element, there are four boundary force or velocity variables at each

terminal. These quantities are transmitted through the structural element

by a linear matrix equation:

PQlj rQZ\
M, M,

'< . = [CLIJ]J . r i;_] = 1: 2’ 3:4 (7)
Vi Va2

k.\Ill J L\IIZ J

where V denotes the lateral velocity of a cross section, ¥ the angular

velocity, M the bending moment, and Q the shearing force; the subscript 1




refers to the input terminal, and the subscript 2 refers to the output
terminal (Fig. 2).
The 4 X 4 matrix [O'ij] is the forward transmission matrix of the

structural component. Note from Eq. (6) that

_ Q) _ Vi
Fp = » Vi =
M, k2!
_ Q; _ \p)
Fp,= v V=9,
M, ¥

It may also be noted that in Figure 2, for convenience, the sign convention
on fz is taken as positive generalized forces for Qp and M applied to the
output terminal 2 bz the load. The sixteen elements o‘ij’ i,j=1,2,3,4,
are, in general, frequency-dependent complex quantities, but are not all
independent from each other?. In this case, it can be found that only ten

of the sixteen elements are independent.

Derivations of Transmission Matrices for
Truncated Conical Shells

We shall assume that for thin conical shells having a small semi-
vertex angle a and an input frequency below a certain limiting value, the
beam vibrations may be satisfactorily governed by the membrane theory
of shells. Thus, referring to Figure 2 for the coordinate system, there

are three equations of motion:

aNS+NS+ 1 _a_l\ég_l_q.'g— hgz_. (8)
Os s s sina 096 s 9t2 a
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Figure 2. Coordinate System



MNeo 2 4L MNo a2
ds s 80 7 Ssina 06 P 9t2
1 8 A

" stana N9 ph 8!:2

and three stress resultant-displacement relations:

N, = Eh 8u+ (___.L__Q_y__'_}l_*_ W )
1-v2 |9s ssina df s stana

Ng = —2 L v, u, w2
l1-v2 |ssina 96 s stana ds

Eh [a_g 1 du v:l

NSG=2(1+V) ssina 06 s

For lateral beam vibrations, we are interested in the following
integrated quantities:

2T
= —szsinza cosaf Ng cos 6 df
0

2t
Q= -s sino.f Nggsin6 dO +s sinzaf Ng cos 6 df
0 0

along with

2m
ucosa cos 9 df

-
it
1
Al
O

|
=l|r-'

f vsinf df
0

=1l»—-

f w cosa cos 6 df
0

(8b)

(8¢c)

(9a)

(9b)

(9¢c)

(10a)

(10b)

(lla)

(11b)

(11c)

11
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These definitions were originally given for a cylindrical shell by

Simrnonds7

, and the directions correspond to those for the input end in
Figure 2. Equations (10) are a generalization of Simmonds' definitions
to the case of a cone, while the displacement components given by
Egs. (11) have been defined here to allow maximum simplicity in the

governing equations for the cone. It should be noted that the net displace-

ments are given by

U* =U - W tana (12a)
V¥ =V (12b)
Wk =W 4+ U tana (12c¢)

where Eq. (12b) follows directly from Simmonds' definitions and applies as
well for the case of a cone. The net rotation ¥ of a cross section will be
introduced only later, for the resulting equations, which must be integrated
numerically, are simpler in form when the variables (11) are utilized.

The governing equations will now be written in terms of the preceding
definitions. We eliminate Ng from Egs. (8a), (8b), and (9b) by using Eq. (8c)
and assuming harmonic oscillations in time. Then, by multiplying Egs. (8a),
(9a), (9b) by cos 6 and Eqs. (8b), (9c)by sin 6 and integrating over the circum-
ference 8 = 0 to 27 (note that 6-derivative terms must be integrated by
parts), we obtain the following equations governing the lateral beam

vibrations of conical shells:

M
gd? = wphwzsinzo.(w tana - U) s - Qcosa (13a)



13

d
-—%: mphw?s sina (W + U tana - V) (13b)
2 .
g_llz 1 M vpw®s sina (13¢)
ds Eh sin2q s E cosa
dv _V 1 U 1 M 1 Q
— ==+ =+ — + = 13
s s sinacosa s wGh sina cosa g2 7Gh sina s (13d)
2525in2a \~
W= - (1 -Bpwistsinfa V+U tan a + v Ml(13e)
E cosla T7Eh sina cosa s

For convenience, we now introduce the dimensionless meridional

coordinate

s s
§ =—=—sina
s a

where

y<€<1

and the dimensionless frequency parameter

dv 1 . 9] Q tana M

T + + + = 14a’

d§ £ sina [V SIe T Cosa  wGh  wGha £ (142)
2

A M___E (14b)

d sina [gfEhat2 cosa

242 ‘
C(lilgl = nEh?nﬂaé (W tana - U) - Qa cota (14c)
s
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dQ _TEhQ%

EF: = —ina (W + U tana - V) (144)
2 -1
Q v M
W= - (1 - gz) [V +IJtana.+-———————————~] (14e)
cosZa wEhacosa §

This set of differential equations is in a convenient form for numerical
integration. Note that the last equation is algebraic and serves to define
the parametric function W.

Since the boundary conditions are usually prescribed on (Q, M, V, ¥),
we shall now derive a relation for the determination of the boundary values
of U which appears in the differential Eqs. (14). The angle of rotation,

¥, of an arbitrary cross section is defined as

U - W tana

U=
V= =—= 15
ag ag ( )
Elimination of W from Eqs. (14e) and (15) gives
-1 .
242 2 22 . v sina M
= - - v - - — e
U = (1 - Q°¢°) [(cos a £%) at V sina cosa ~Sha g:|
(16)
Now, four independent numerical integrations of Eqs. (14) for the four
sets of initial values at £ = v = b/a,
1) {Qz My, V2, v,} = {1000}
2) {QZo MZ’ VZ: \I'Z} = {O: 1: O: O}
(17)

0
——
L
L
i
(=]
——

3) {2y My v 1}

2) {Qy My, V5, 15}

1
—A
L
L
L
oy
(SR
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will yield the influence coefficients ﬁij at the boundary § = 1:

1) {en M v n}
2) {ap My, v,n}
3) {Qp M, vy, 7}

4) {Ql’ My, Vi \Ifl}

{P11.621.831. 841}
{@12»‘322, P32 642}
{ﬁw P23 533:543}
{ﬁ14’ P24, B34 5344}

(18)

"

Note that the initial value U, at € = v should be calculated by substituting

Eqgs. (10) into Eq. (9):

1)
2)
3)

4)

Uz =0

it

U,

(1 - 9272)-1 (:_ v sina}

U, = (1 - Qz'yz)'l | - sina cosa]

-1
Uy = (1 - 9%92) * [(cos?a - 2%42) ay]

The transmission matrix [Bjj] now relates the boundary force and displacement

variables as follows:

My

Vi

lew

L‘I,].J

T = [ﬁijh

(20)

The conversion into [aij] may be readily effected by using the relations

\}'=in , \I.l=

iww

Thus, from Egs. (6) and (7), we note that:



La21 9224

[_] @13 %14 :

w
Ld23 924

1]

|

[_] a1 1] [611 512}

B21 B2z

P13 514]
B2z Bag

[E] _ [a3] a327] (ﬁo)[ﬁ31 532}

Lag) 94p Ba1 P4y
1 [@33 a34] [B33 Bay
5 - [ .

Lags 9444 LByz Byy

Special Case of Cylindrical Shell (a

(21)

The governing equations for a cylindrical shell may be obtained

directly from Eqs. (13) by letting

a - 0, s sina — a, andi_.iizz
ds dx
Wealso note that
U — U, V = V¥, and W — Wk

so that we also have

g=0*_T
a a

Thus, the equations become:

% = -rEhQ%a%¥ - Qa

w x|

l d— where x
a dx

(22a)

16



dQ _ 2
5 = "ERQW - V)
2
¥  gEha a
dv Q

—_— +o—_—

X a 7w Gh

W = (1 -02)°} [v + "M]
wEha

(22b)

(22¢)

(224)

(22e)

Equations (22) are identical to Eqs. (30) thru (34) of Simmonds?. By

eliminating M and Q from these equations, we obtain:

2
o~ oV oW 1-

aa—é—+v(é?+§)+ Zv(g—~a\ll)+(l-v2)92a\ll=0
X

BZV o 2

——2-a~8——2(1+v)§2 (W-V)=0

ox X

(1-v2)02w-uag—\1’-v-w=o
X

which can be written as:

-

,02_1;"+(1 - v2)n2 _—-—-1;:".(7 v
- J2 +2(1 +v)R2 -2(1 + v)R2
i v 1 1 - (1 - ve)R2

where & = d/dx. By assuming solutions of the form e¥

characteristic equation

\ii2eA2 k=0

(23)

avw

, we obtain the

17



Q2 )
P:m [5+2v - (1 +v)3 - v)Q2]
2
K=—2__ [1-200+v)9%][2-(1 - v2)02]
(1-92%)

whose solutions are

(ir)2=-P -NP2 +K

(24)
Ns=-P+NP2+K , for P,K>0

The case of P, K € 0 will be discussed later.

The general solution to Eqs. (23), which corresponds to Eqs. (24), is
V = Ajcos A\jx + BysinAyx + CycoshXyx + Dysinh\,x
Upon substitution of this result into Eqgs. (23), we find additionally

W = Alflcos )\lx + Blflsin )\lx + lezcosh )\Zx + lezsinh )\zx

al = Ajgysinjx - BygjcosAjx + Cygpsinh Ayx + Dygscosh Ayx

where
v)\% -1 - 2v(1 +v)Q2 -v)\% -1 - 2v(l +v)02
f1 = 22 > f2 = 202
1 - (1+v)°0 1-(1+v)°e
(1-v2)R%6, - £ - 1 (1-v3)0%s, - £, - 1
gl = V)\l ’ gZ: V)\.Z

and upon substitution of these expressions into Egs. (22c, d), we obtain:

M = maEh [(gl)‘l +v + vfl)(Alcos )\lx + Blsinxlx)

l—v2

+ (gz)\.z + v+ sz)(ClCOSh )\Zx + Dlslnh )\Zx)]

18
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Q =7Gh [(N\) + g1 Bjcos M\ix - Aysin \jx) + (Xy - g3)(Cysinh Arx

+ Djcosh \px)]

Thus, all variables have now been determined in terms of the

constants A,, B;, C;, and D;, which must be determined from the boundary

conditions. If we let
Eh
p1 =(gih; tv +vf1)———-—“a > M2 = (g2hp +v + vi))
(1-ve)
3 = mGh(ry + g;) »  ngq =7Gh(r, - g;)
1 Y
’ 2
A = A= —
1 2 a
then at x = 0, we have
(Q2) [0 w3 0 ug|(A1] (A )
J M k1 0 pz 0 B By
I tetegy b
VZ 1 0 1 0 Ci Cy
g1 g2
I 0O -— 0 - D D
\. 2 L a a ] \ 14 L 1 J
and at x = £ /a
r-p.3sinA1 p3cos Ay Mgsinh A, pgqcosh Aoy
kycos Al plsinAl pzcoshAz p.zsinhAZ
cos [\ sin /) coshA, sinh A,
g g g .
—lsinAl - —-}-cosAI ——Z-sinhAz —?lcoshAZ
a a a

maEh
(1-v2)
(25)
r
Ay Ay
B, B
F= [’Yij]i
C, Cy
D, Dl
J L
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Then, from Eqs. (20), (25) and (26), we may form the matrix equation
- -1
[61_]] = ['Yij] [¢1J] (27)

and the aj; are again found as in Eq. (21).

We now return to Eqs. (24) for the case

(ix()2 = -P -NP2 + K

-P +\NP2 +K

for P>0, K<0, NP2 +K 20 (28)
(ix,)2

It can be seen that the form of the solution will change for this case, as
well as other possible combinations of P .and K, whose values are functions
of frequency. Here, we will consider only the additional case of Eqs. (28)
which occurs at the lowest frequency change corresponding to

1

02 = ——
2(1 +v)

For the case of Egqs. (28), we have
V = A2COS )\lx + stin )\1X + C2COS )\Zx + Dzsin )\.2X
and, upon substitutioninto Eqs. (23), we find

W = Azfl cos )\lx + BZfl sin\yx + szz cos 7\2X + szz sin Apx

al= Ayg) sinh\jx - BpgjcosN\x + CogrsinXyx - Dygpcos Npx

where f], gj, andgpare given as before, but

2

vkz

-1 - 2v(1 +v)02?

£
2
1 - (1 +v)%Q%
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and, similar to before, we have

'rraEhZ [(g1\y + v + vi])(Aycos \1x + By sin\ix)

1-v

+(gyNy +v +vf)(Cycos Apx + Dy sin Aox)]

Q = mGh {(N] + g1)(Bzcoshix-Apsin\1x)+(XA2 +g2)(D2 cos X2x - C2 sin \2x)]

Finally, for this case, it can be seen that at x = 0:

[0 3 0 ps |
3! L
[455] = (29)
1 0 1 0
! g2
- — 0o --=
L % a
where
pg = wGh(\, + g7)
and, at x = {/a,
—-p3sinA1 p3cos A}  -pgsinAp  pgcosAp T
ppcos /g pysinfAy  ppcos iy Rpsin A,
[y = (30)
cos /Ay sin/Ay cos Ay sin A
g g
-%l sinAy - 2L cos Ny 22 sinfA, - —2—cos A,
L a a a a N

Then, Eqs. (27) and (21) are used for determining the coefficients

aij for this case.



APPLICATION TO SHELL WITH RIGID TOP MASS
For a shell element which supports a rigid top mass and is excited

laterally in translation only at the base, we have

\Ifl =0 , QZ = - sz*VZ , MZ + Q25 = - wZI\IfZ

where the notation is indicated in Figure 3. Combining the last two

equations

;=0 , Qp=-wiMxV, , M, = wZM*6V, - w21,

and, by substitutingthese into Eqs. (20), we have

[ Q) (= B11weM* + B awlM*b +B13) (- Prawll +B14)] v
2
— = |—— e e ——— . e ——— 1
Vi (= B3 @PM* + B30l M*6 4 Bs) (- 3021 +Byy) .
2
L0 L (= Byl M* + B w2M%8 +B,5) (- B,w?T+B,,) | |
7
e11 <z |
V2
€21 <22
= T < (31)
dj1 di2 f
4y d K
21 2z {7
Partitioning the matrices as indicated, and dividing by Vi, we have
Ql/vl V2 /Vl
= [Cij] (32a)
1 VZ/VI
= [dy1 (32b)
0 v, /V
2° "1
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15° Cone (o =15°)
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I =0.5191b in secz, 6 =1,.08 in.

Cylinder (o = 0)
a =5 in., £ =15 in,
I =0.5471b in sec?, 6 = 0,56 in.

All Specimens

Mg = W, = 32.8 1b.
h = 0.005in., E =30x10° psi

Figure 3. Schematic Of Rigid Top Mass On Shell
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Now, from Eq. (32b), we have

v, IV, N d22 -1
=[] = (dy1dz2 - d12dz1)
¥,/ V) 0 - dj

(33)
and recalling that
V=iwV |, U= iel
we have
(\}2/\}1) = (V,/Vy) (34a)
(\ifz/\}’l) = (¥,/Vy) (34b)
along with
Q,/V) = 'iB[Cqu/Vl +c12%/ V] (34c)
Ml/\.’]. = - (;:- [CZIVZ/Vl + sz‘IfZ/Vl] (344)
Qy/Vy = (Q1/V]) (V1/Vy) (34e)
M, /Vy = (M1/V1]) (V1/V3) (341)

Equations (34c, d) and (34e, f) express driving point and transfer pseudo-
impedances, respectively. All of Eqs. (34) hold true for cylinders as well

as for truncated cones.

EXPERIMENTAL APPARATUS AND PROCEDURE

The apparatus which has been designed to measure the behavior of
cones under lateral excitation is basically the same as that used for longi~

tudinal excitation in the earlier part of the program so that details of most
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of the apparatus can be obtained from the earlier reportl. Only a brief
description will be given here for those parts of the system which are differ-
ent from that used for longitudinal excitation. A diagram of the apparatus is
shown in Figure 4, while a photograph is shown in Figure 5.

The same two cones (15° and 30°) along with the same cylinder are
used for the present tests under lateral excitation, and the same terminal
weights (32. 8 1b) are used at the output ends. However, the specimens are
now excited laterally by the use of a horizontal slip table in conjunction with
the electrodynamic shaker as shown in Figure 5. The same base rings and
mounting plate are again utilized, except that an alteration in the force gage
arrangement is necessary. As can be seen, two vertically oriented force
gages are used for measuring input moment M, while two horizontally
oriented force gages are used to measure input force Q;. These horizontal
force gages, one on each side of the base ring, have one end bolted to the
lower base plate and one end bolted to the base ring on the cone. This design
allowed for essentially no cross-signals between the force and moment
gages. Input velocity and output velocity and rotation are measured by
means of piezoelectric accelerometers. Thus, a bare minimum of additional
apparatus was necessary over that required for the earlier studies incor-
porating longitudinal excitation.

The procedure for experimental measurement is essentially the
same as that previously utilized. A similar mass-cancellation circuit is
used for nullifying the force signal resulting from the base rings, and a

frequency range of 20 to 600 cps is used.
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Figure 4. Diagram Of Experimental Apparatus
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RESULTS AND DISCUSSION

Theoretical and experimental results are presented in the remain-
ing figures of this report. The results are presented in terms of the
absolute values of the parameters indicated in Eqs. (34) for laterally
excited specimens supporting a rigid top mass. Six different parameters
were utilized in order to obtain a good overall picture of the dynamic
behavior of the three specimens studied. The results, as presented in
eighteen different figures, can conveniently be compared if they are laid
out as indicatedin Figure 6. Thisarrangement allows a quick comparison
among the six parameters for a given specimen by moving horizontally,
while comparisons for geometric effects on a given type of parameter
can be made by moving vertically from the 30° cone to the cylinder (top
to bottom). The latter procedure will be used in the subsequent discussion.
Although the absolute values of the parameters are plotted, the algebraic
sign is indicated for the various branches of the curves, These algebraic
signs, of course, correspond to the convention indicated in Figure 2.
Experimental phase angles were found to correspond with these signs in
general, except that they shifted more gradually in the vicinity of dis-
continuities, because of the presence of damping,

The translational velocity ratio (Figs. 7-9) and the rotational
velocity ratio (Figs. 10-12) were included as parameters since they are
probably the least susceptible to errors within the experimental apparatus.
That is, the signals were obtained simply from piez&electric accelerometers,

and no further processing other than filtering was applied. Likewise, these



30° Cone
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Figure 6.

Convenient Layout For Results
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signals, as well as those for moments, were not influenced by the mass-
balance system. Division in the velocity ratios, as for all cases, was
performed numerically rather than electronically. A basic change in the
trend of the translational velocity ratio occurs in going from the 30° cone
(Fig. 7) to the 15° cone (Fig. 8). The 15° cone and cylinder are more
alike (Figs. 8,9).

Overall agreement between theoryand experiment is good for the
first two parameters (Figs. 7-9 and 10-12), although various discrepancies
can be observed in different areas of the frequency range. The first
resonance appears to occur at a slightly lower frequency than predicted
for all three geometries. In addition, a split peak, which probably results
from geometric defects, occurs for the first resonance in the cylinder.
This trend will be consistent throughout all the results. It may be noted
that an extraneous resonance appeared at about 75 cps in Figure 10. This
resonance does not appear in any of the other data for the 30° cone and is
probably due to extraneous motion in some part of the fixtures that did not
influence the other signals.

Force input pseudoimpedances are shown in Figures 13-15. Again
a basic change in the trend occurs in going from the 30° cone (Fig. 13) to
the 15° cone (Fig. 14). Comparison between theory and experiment is
good outside the two resonance peaks, but is poor for the range of fre-
quencies in between, The discrepancy appears to be most severe for the
cylinder, where the experimental intermediate antiresonance occurs at

a significantly lower frequency thanis predicted. The source of this
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error appears to be in the value of the net shear force Q;. In order to
verify the performance of the experimental system, data were retaken
after the system had been disassembled and reassembled, and no essential
difference in results occurred. Further, the performance of the mass-
balance system was checked and rechecked. The linearity of the system
was found to be good upon checking the results at various input amplitudes.
Thus, the source of the discrepancy does not appear to lie in the instru-
mentation.

Further reflection on the location of the antiresonance in Fig-
ures 13-15 leads back to Eq, (10b)., That is, the antiresonance occurs at
the point where the net shear force Qj at the input becomes zero. Theo-
retically, this occurs in the nontrivial case where the two terms of
Eq. (10b) nullify each other, It appears that in the experimental system,
the actual distribution of shear forces presentis different from that
predicted within the intermediate frequency range. This may result from
small wrinkles and eccentricities in the cylinder or may reflect the need
of using a bending theory. More workis necessary to resolve this question,

Moment input pseudoimpedance is shown in Figures 16-18. Although
there is a consistent change in shape in going from the 30° cone to the
cylinder, the general character of the curves is unaltered. Agreement
between theory and experiment appears to be worst for the 15° cone, with
a local extraneous discontinuity appearing at about 250 cps. The origin
of this discontinuity remains undetermined. We agaJ;.n emphasize that

this parameter was not influenced by the mass-balance system.
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Force transfer pseudoimpedance is shown in Figures 19-21.
Agreement between theory and experiment is quite good for the 30° cone,
but becomes progressively worse in going to the cylinder, Again the
increasing discrepancy in the position of the intermediate antiresonance
appears. Figure 21 probably shows the worst overall correspondence
for all the data presented. The same comments which were previously
made about this discrepancy also apply here,

Moment transfer pseudoimpedance is shown in the final Figures 22-
24, Agreement between theory and experiment is fair. Again the extra-
neous discontinuity appears in the experimental values for the 15° cone
at about 250 cps. Likewise, increaseddiscrepancy occurs above 400 cps.

Several possible sources of error in the experiments have already
been mentioned.but were continuously checked. An additional source,
however, is inability to maintain a perfect zero rotational input (¥; = 0)
at the base of the specimens. The sensitivity of the results to small
amplitudes of this parameter would need to be determined.

Overall agreement in all results appears to be good. However,
several definite discrepancies are present for part of the frequency range.
Whether or not the use of a bending theory would prove more accurate,
or whether consideration must be given to cylinder imperfections, remainé
to be determined, Nevertheless, the membrane theory does appear to
provide at least a good approximation for predicting impedance and trans-

mission characteristics of cones and cylinders.
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APPENDIX

LISTING OF COMPUTER PROGRAM AND FORMAT
OF INPUT DATA CARDS
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INPUT DATA DESCRIPTION
(CONE)

FORTRAN VARIABLE

CARD NO, SYMBOL NAME UNITS DEFINITION
1 N n Number of frequency sets.
2 A a in. Major base radius.
SB b in, Minor base radius.
ALPHA deg. Semivertex angle,
H h in, Wall thickness of conical
shell.
3 ENU Yy Poisson's ratio.
E E psi Young's modulus,
RHO 4 1b-sec?/ Mass density.
in%
4 wWT W, 1b. Weight of attached mass,
Al I lb-in-sec? Moment of inertia of

supported mass.

DEL g in. Offset of center of
supported mass.

5 FRQ. f5 cps Initial frequency.
FRQX; Af; " cps Frequency increment.

FRQNj fn cps Final frequency.




PROGRAM OUTPUT

Printed OQutput

All input data except I and g.

Frequency f in cps and rad/sec.

Characteristic transfer matrix [ 0C ij] and transfer matrix [ ﬁ ij] .
Translational and rotational velocity ratios (\'/'2/\.71) and (‘:\J 2/\'/'1).

Force input and moment input pseudo impedances ZQ11 and ZMl1.

Force transfer and moment transfer pseudo impedances ZQ12 and
ZM12.

¥ 0 > cos (0C), an error message will be printed and the program
will continue.
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PROGRAM NOTES
(CONE)

Subprogram Used

In addition to the main program, the following function sub-
program was used.

1. RKLDEQ, computes the solution of n first-order ordinary
differential equations by the Runge-Kutta-Gill fourth-order
method,
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it n

0

6300

PROGR AW Y I NDER T T - - T SWR 200
Sw2t PRgs- T (e-2034 o e SWR 300 B
Tl Be TV IRTRAN o o o SWR 400
DlmeNSTON = (12),F  X(12),FN(12) SWR 500
BTMENSTOw A(G,4),+(4,4),C(4,4),1R0W(®), ICOL(B) SWR 600
BATA (1Piz23,14159245),(C1=386.0) SWR 700 e
2000 Read 250, W SWR 800
200 FURMAT ( i3 ) e SWR 900
T IV (RO, 60024, 725 o - . SwWR 1000
2 STow SWR 1100
*x* SEOMETRIC PARAMETFRS : SWR 1200
29 Retd 299, SA,SC,H e SWR 1300 N
T T 20 FORWMAT U sr1a.n ) SWR 1400
*ew MATHR]iL PARAMETERS S SwWR 1500
REon 210, =&U,k,RN0 SWR 1600
21U FORMAT (F14.0,2810.2) SWR 1700
w®k*x K] 1 MASS SwR 1800
Realr 219, WT,AT,DEL o L SWR 1908
Zio FORMAT ( 3-31d.3 ) SWR 2000
HMS =2 Wi/l SWR 2100
ALPHAE = 0. o - o SWR 2200
Sk = Sa SWR 2300
*ww FREQUE. .Y RANGH SwWwR 2400
REAL 209, (FOI),F XCEYLFN(L), {=1,N) SWR 2500
BRINT UG T N B SWR 2600
$0i HORMAY (1r1, 6X,55HCYLINURICA . SHELL LATERAL IMPEDANCE PROGRAM = .SwR 2700
1.U. KANA//h6H WIS PROGRAM CALCULATES (4X4) TRANSMISSION MATRICES SWR 2800
2bETa(i,J) And/66M ALPHA(L,J) FOR CYLINDRICAL SHELLS UNLCER LATERAL SWR 2900
IFXCITATIONS, ALSO/66H CALCULATES iINPUT AND TRANSFER PSEULCO IMPEDANSWR 3000
4CES Wkt AN ARBITRARY/44H MASS M 1S ATTACHED To THE OUTPLT TERMINASWR 3100
I TR _ SWR 3200
PRINT 395,ALPHA,E,SAJENU,SB,RHO,H,BMS SWR 3300
3p5 FORMAT (1w0,10X,20HGEOMETRIC PAKAMETERS, 25X 19HMATERIAL PARAMETERSSWR 3400
17261 SH4IVERTEX ANGLE ALPHA s ,+7.3, 8H DECREES,6X,20HYQUNGS MODULSWR 3500
50S F = LF10.3, &k PSI1/286H MAJON RBASE RADIUS A x ,F7,3,7H INCHESWR 3600
3S,7X,20APCO1SSONS RATIO NU = ,£10,3726H MINOR BASF RADTUS B = , SWR 3700
4F 7.5, 74 TNCHES,7X,20HMASS UENSITY RHO s ,E30.3,17H LB(SEC)*+2/INSWR 3800
5w#4/30~ THICKN-§S5,12X, 4HH = ,F7,3, 7H INCHES,7X, 4HMaSS,12X, 4HM SWR 3900
6% ,F10.3,7dH Le(S-Cr*w2/INY SWR 4000
PRINT 220 SWR 4100
320 FORMET (IRU, 34X, I7HFREUUENCY ( CPS )) SWR 4200
PRINT 425, (F (1),FDx (I),FNv  (1),Ix1,N) SWR 4300
325 FORMAT (JUX,FB.1.2H (,F68.1,2H ),F5,1) SWR 4400
PRINT 330 - SWR 4500
330 FORMAT (#0 FREQ#,5X,#OMEGA=, 14X, «( (ALPHA(I,.),usl,4),181,4)s, SWR 4600
1 27X, % ((B=iA(I,J),J21,4),121,4)+) SWR 4700
G = E/7(Z,0«(1,.0«ENU)) SWR 4800
WO = SORTHF(E/RHO)Y/SA SWR 4900
DO 40 i=1,N B SWR 5000
FREG = ¢ (1) SWR 5100
1000 W = 2,.0*P . *FREQ " SWR 5200
WSO = Wew SWR 5300
OMEGA = W/WD SWR 5400
0S89 = OMEGA®OMEGA SWR 5500
ARG ® SAORTF(J.5/(1.0%ENUD) ' SWR 5600
IF (OMFGA.LT,ARG)11,12 ' SWR 5700
11 SGN = 1.0 SWR 5800
GO TN 10 SWR 5900
17 IF (DFrGA.GT,ARG.AND.OMEGA,LT.0.99)13,15 - SWR 6000
13 SGN = =1,0 SWR 6100
10 P (0SQ37(2.0*(1.,0~0SQ)))«(5,0+2,0#ENU(L1,0+END)*»(3,0-ENU)*0SQ) SWR 6200

(0SQ/(1,0-08Q))*(1.0-2,0%(1.0+ENUI*0SQ)*(2,0-(1.0-ENU*ENU)» SWR
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1 0SS SWR 6400
IS = SURIF (P*Fed) - L SWR 6500 o
ALY = SQRTIF(P+DIS) SWR 6600
AL? =2 SWRIF((-PasD:S)*SuUN) SWR 6700
VI1i = (AL1#SL)/SA SWR 680°0
ViP = (ALZ*SL)/SA S SWR_ 6990 o
F1 = (FNU*ALLw*AL1-1,0-2, 04ENU* (1, 0+ENUY*0SGE)/Z(1,0~(1.0+ENU)*w2w SWR 7000
1 nsgy o SWR 7100
P2 2 (=sMUSSUNSALZ7xALZ=1,0«2, UwENU»(1 . 04ENUI®0SE)/Z(1.0=-C1,0% SWR 7200
1 ENU)«#2#0S ) SWR 7300
G1 = ((Ll.c~EVvU*ENII)»0SU*F1«F1-1.0)/(ENU®ALT) SWR 7400
52 = ((l,o=FNUsENG)w0SUer 2F2-1,0) /(ENIj*AL2) SWR 7500 ~
Ul = (LLwa 1+ENUSFNURF L) *((F]oShebab ) /(1,«-BENUR*2)) SWR 7600
U2 = (2wl 2+ENUSENU*F2)*# ((PI*SAetwH) /(1,-ENL»#2)) SWR 7700
U = PiwGacie (Al 1+51) SWR 7800
U4 s PiweGedw(A. 200G2) SWR 7900
U = PieGarHw(A_24132) SwR 8000
AC1,1) = G, . B B SWR 8100 _
Al1,2) = US ) SWR 8200
A(1,3) = (. SWR 8300
A(1,4) = v4 - SWR 8400 o
A(2,1) = U1l SWR 8500
A(2,2) = U. SWR 8600
A(?2,3) = L2 SWR 8700
Aa(2,4) = G. SWR 8800
A(S,1) = 3 L ) . SWR 890U o
A(2,2) = 0. T T SWR 9000
AC3,3) = 1. SWR 9100
A(3,4) = U, SWR 9200
A(4,1) = 0. SWR_ 9300
A(4,2) = -i51/Sa SWR 9400
A(4,3) = U, SWR 9509 o
A(4,4) = +52/54 SWR 9600
CN1 = £DSF(VI1) & SN1 = SINF(VI]L) SWR 9700
CN?2 = CDSH(VIZ) SSN2 = SINF(VL12) SWR 98010
SNH & 5. 5% (EXPr(Vi2)=EXPF (=V]2)) SWR 9900 }
COSH =2 J.5% (EXPF(ViZ)*EXPr (=V][2)) SWR10000
H(1,1) = ~U3#SN1 SWR10100 o
B(1,2) = UI«CNI SWR10200
B({(2,1) = U1lw(QN1 SWR10300
B{2,2) = Ul«SN1 SWR10400
B(3,1) = (N1 o SWR10500 o
B(3,2) = SN1 SWR10600
B(4,1) = (G1#SN1)/SA L SWR10700 e
B{4,2) = -~(Gi+*#CN1)/SA SWR10600
IF (OMEGA,LT,ARG)14,16 SWR10900 _
14 B(1,3) = U4d«3NH SWR11000
BR(1,4) =2 U4xCSH R SWR11100 o
R(2,3) 2 UZ2«(CSH SWR11200
B(2,4) 3 U2«SNH SWR11300
B(3,3) = (Sn SWR11400
B(3,4) = SN# SWR11500
B(4,3) = (G2*SNM)/SA SWR11600
B(4,4) = (u2#CSH)/SA SWR11700
GO 10 17 SWR11800
16 IF (OMEGA.5T,ARG,AND.OMEGA,LT.0.99)18,15 SWR11900 -
18 B(1,3) = -U5w*SN2 T SWR12000
B{1,4) 3 +US*CN2 SWR12100
BU2,3) = UZ«CN? SWR12200
B(2,4) = U2wSN2 B ~ SWR12300 L
B(3,3) s (N2 SWR12400
B(3,4) = SN2 SWR12500




H(4,3) = (32*S<p)/SA o SWR12600
#(4,4) = -(GewinN2)/SA SWR127090
£(1,4) = U» T T B SWR12800
A(4,4) = ~52/8a SWR12900
17 CACL MaTINV(A,TROW,ICOL,4,4,1.0E~05) SwRk13000
no oo =3,4 . o o - SWR13100
Ul 55 <=1,4 o CTotrem e T SWR13200
Sui4 = i, SWR13300
00 76 " =1,4 T T e - SWR13400
SUM = SUN+BE(J, L )wa (LK) ’ SWK13500
70 CONTINU= SWR13600
CJK) = SUM , SwR13700
65 CONTINUR otttk e o e SWR13800
60 CuNTINUE SWR13600
811 = ~(1,1) 7~ - T S ’ SWR14000
F12 = 7 (1,2) SWR14100
BEITT = (1,5 SWR14200
Rld4 = °(1,4) i B SWR14300
Hel = (2,17 T o T SWR14400
K22 = - (2,2) SWR14500
FZ3 = 7 (7D,3) T - ’ SWR14600
K24 s [ (2,4) SWR14700
31T ® (X, ’ SwWR14800
HS? = ¢ (3,2) SWR14900
B33 = 1 (8,57 e SWR15000
R34 = ' (3,4) SwR15100
WET = 1 {4,1) T oo o SWR15200
5427 = ((4,2) SWR15300
B43 = ((4,3) SWR1%400
Bd4sd & ' (4,4) SWR15500
E11 = =13 § A1? ® Bie¢ ¥ A21 =& G721 § A27 & R2? SWR15600
31 5 WeHS1 b 541 = WeB4l § A32 = Weh32 § A42 = WeR42 SWR15700
F13 s -B1Z/W & A28 = -B23/W $ Al4 = -B14/W $ A74 g =B24/W SWR15800
Ah3% ' =33 § A34 3 B34 b A43 = B43 § Ad44 = B44 SWR15900
THT & SMSwAST SWR16000
TM? 8 Alw*WSQ SWR16100
TV3 ® T91%del R R SWR16200
11 2 FL3+TMIwKH12-TMlwdl1l SWR16300
(177 FI4-TMZ*ni2 T - SWR16400
NZ21 = #23+TME#322-TM1#B21 SWKR16500
77 E RZ4-THMdwRZDZ SWR1I6600
11 2 =383+ MIwen32-TMlwd31 SWR16700
NI7 & F34-THZ*R32 o SWR16800
21 B ~4%+TM3*rd2-TM1xB41 SWR16900
P LA4-TMIwAES T T SwR17000
TM4 = D1iw22-1112+D21 SWR17100
VZVI = J2-777% SWR172070
P2Vl = ~pr1/TMa SWR17300
70T Te-{CIi«VZVTLCIZ*P2VIY /v ' SWR17400
IM113=(021#aV2V1iaCR2%«F2V1) /W SWR17500
7012 = Zg117vZvy i T SWR17600
M12 = IM11/V2va ) SWR17700
PRTNY 335, FREQ,W,A11,A12,A13,214,R11,R12,E13,R14 SWRI17800
335 FURMAT (F9.1,¥10.1,4F12,3,5X,4E12.3) SWR17900
PRINT 40, AZ1,A2/,A23,A24,821,8522,B23,R24,A31,A32,A33,434,831, SWR18000
1 R32,R33,334,A41,442,043,444,R41,R47,R43,R44 SWR18100
347 tURMAT (19X,4E12.%,5X,4E12.3) SWR18200
PRINT 370, V2V1i,P2v1,2ZM11,Zu11,2M12,2Z2Q1%2 SWR18300
370 FORMETY (#0 V27Vl = *,E10,.3,* PSI2/V]l 8 #»,E10,3,« 2M11 s w, SWR18400
{ F10.3,% ZU11l = »,E10,3,« ZM12 = #,F10.3,+¢ 2012 = «,E10,3///) SWR18500
45 1F (FRFG=FN(I))35,40.,40 SWR18600

35 FREQ = “ReQ+FDX(]) . ' SWR18700
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O 70 1uou SWR18800
40 CONTINUE o SWR18900
GO 10 2y00 SWR19000
1 FRINT 350, W SWR191040
S50 FORMAT (1n ,3X,E11.3,4X,25HNEAR OR ABOVE SINGULARITY) SWR19200
GO T 4% SWR19300
tND) ’
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INPUT DATA DESCRIPTION
(CYLINDER)

FORTRAN VARIABLE

CARD NO, SYMBOL NAME UNITS
1 N n
2 SA a in
SL 1 in,
H h in
3 ENU pY,
E E psi
RHO P lb-sec?/
in4
4 wWT Wi 1b.
Al I lb-in-sec?
DEL S in.
5 Fy f; cps
FDXj Af; cps
FNj fn cps

ol

DEFINITION

Number of frequency sets.

Radius of cylindrical
shell.

Length of cylindrical
shell.

Wall thickness of
cylindrical shell.

Poisson's ratio.
Young's modulus.

Mass density.

Weight of attached mass.

Moment of inertia of
supported mass,

Offset of center of
supported mass,

Initial frequency.
Frequency increment.

Final frequency.



62

PROGRAM OUTPUT

Printed Output

1. All input data except I and d.

2. Frequency f in cps and rad/sec.

3. Characteristic transfer matrix [QC jj] and transfer matrix [ﬁ ijl-

4. Translational and rotational velocity ratios (V2/V1) and (Y 2/V1).

5. Force input and moment input pseudo impedances ZQ1l1 and ZM11.

6. Force transfer and moment transfer pseudo impedances ZQ12 and
ZM12,

7. ¥ 0 >0.99, an error message will be printed and the program

will continue,



PROGRAM NOTES
(CYLINDER)

Subprogram Used

In addition to the main program, the following subroutine sub-
program was used.

1. MATINV, computes the inverse of a real matrix,
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5 TPRNOGRAM (LNEIMP SWR 100 {
L PROJECT 1 2 - 2 0 3 4 SWR 200 o
CCT 3609 rORTRAN o SWR 300
PDIMENSIUN  Y(4),F(4) SWR 400
GIMENSON FRO(20),FROX(20),F<ON(ZD) SWR 500
NIAENSTIN V(4),yta),BM(4),0(4) ~ SWk 600
UATA (P1=5,14159265),(C1=586,0),(0L221,/4532925F«(02), (ERKEL1,E=5) SWR 700
2001 wkEAD 200, W e SWR 800
200 FORMAT ( 115 ) - SWR 900
IFO(BGE,60)81,585 SKR 1000
8 STnk SWR 1100
o wew GEUMETRIC PAXAMET-RS o SWR 1200 N
8~ REau Z05, A,SB,AL~HA,H SWR 1300
205 FORMAT ( a~10.10 ) o ) SWR 1400. |
*ex MATERIAL FaRAMETERS T SWR 1500
Read 21u,bNUE,RHG SWR 1600
217 FTORYAT ( v10,0,2F10.2) SWR 1700
D owww RIGID mASS } SWR 1800
READ 219, WT,AL,DrL o . SWR 1900
215 FORMAT ( 3F10.0 ) SWR 2000
BMS & wWl/.1 - SWR 2100
ALFR = C2%ALPHA : SWR 2200
TAN ® T.SN/TCN SWR 2300
LUN & COSF (ALFR) SWR 2400
DSN s STWNF (ALFRY SWR 2500
G = B/7(2,0#(1,0+ENU)) ) SWR 2600
WO = SORTF(E/RAQY/ZA ' SWR 27080
GAM ® S4/4 SWR 2800
WS = WO«D(OWN SWR 2900
FS = WS/(2.0wP}) SWR 3000
wwwr FREQUENUY RANGE SWR 3100
REAL 220, (FRQ(I),FRAXC(I),FRONCI)Y,I®1,N) SWR 3200
220 FORMAT ( 3r10.0) SWR 3300
PRINT 300 SWR 3400
300 FURMAT {IFI, 6X,51HCUNICAL SHELL LATERAL IMPEDANCE PROGRAM = D.D, SWR 3500

1KANA//AHH THIS PRGGRAM CALCULATES (4X4) TRANSMISSION MATRICES BETASWR 3600

20T, JY avD762H ALPrA(T,J) FOR CONICAL SHELLS UNDER LATERAL EXCITATISWR 3700
JONS, A1 30/56H CALCULATES INPUT AU TRANSFER PSFUCO IMPEDANCES WHENSWR 3800

4 AN ARRITRARY/44+H MaSS M IS8 ATTACHED T0 THE OUTPUT TERMINAL 2) SWR 3900
PRINT 305, ALPHA,r~,A,ENU,SB,RAD,H,BMS SWR 4000

305 FURMA (IR0, IUX, 20RGEDMETRIC pIRIFEIERS ZBE {SHMATERTAL PARAMETERSSWNR 4100
17265 SHFMIVERTEX ANGLE ALPHA = ,F7.3, 8H DEGREES,6X,20HYOUNGS MODULSWR 4200

2US E = ,t10.,3, 4~ PST/26H MAJOR”BKSE RADIUS Az ,F7,3,7H INCHESWR 4300
3S,7X,20HP0OISSONS RATIO NU = ,£10,3/26K MINOR RBASE RAGIUS B = , SWR 4400

4F7.3, 7H INCHES,7X,20HMASS DENSTTY RHO » ,E10,3,17H LB(SEC)ew2/INSWR 4500 i
S#x4/10H TrlCXNESS, 12X, 4dH ® ,F/.3, 7H INCRES,7X, 4HMASS,12X, 4HM SWR 4600

§T ,EL0.3, 147 LR(SFCI"+271N) SWR 4700
PRINT 320 ) SWR 4880

320 FURMAT (1RU,34X,L{7HFREVUENCY ( CPS ) SkK 4900
PRINT 325, (FRQ(I),FRQ@X(1),FRONCI), 1=1,N) . SWR 5000

325 FORMAT (3TX,F8.1.,2H (,F6.1,2H ),F8,1) SWR 5100
PRINT 310, FS,WS SWR 5200

310 FURMAT (1F0,23X,S3RFREUJENCY SINGULARITY = S = ,F8.1748X, SWR 5300
1 YHOMEGAS = ,F8,1) : SWR 5400
PRINT 330 SWR 5500

330 FORMAT (#0 FREQw,5X,«0OMEGA®, 14X, *((ALPHA(I,u),J21,4),181,4)w, SWR 5600
1 27X w{(RETA([,J),JFr1:4),134,4)») SWR 5700

DO 40 1=1,N SWR 5800

FREQ = FRQCI) ] SWR 5900

1000 W = 2.0%P1wFRED SWR 6000
WSQ ® WeW SWR 6100

OMEGA = W/W0 SWR 6200
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USH & UMEGAWOMEGA SWR 6300

DX = (1.0-S8/A)/100.0 S SWR 6400
V(3) = B8M(2) = (1) = 1,0 SWR 6500
VI1) = v(Z) 5 V(4) = 0. SWk 6600
U€{3) = =(LSN*DCN)/(1.0-0SQ#GAMRGAM) SWR 6700
U(4) = ((UUN*YDCN=GSQ*GAM*GAMIWA*GAM) /(1,0~CSG*GAMRGAM) SWR 6800
U(2) = =((eNUWRDSN)/(PIwE*wA»aaM))/(1,0=0SQ*GAM®YGAM) SWR 6900
u¢1) = 0, - - SWR_7000
RM(1) = BM(3) = BM(4) = 0, SWR 71060
Ql2) = Jd(s) 3 y(d4) = 0. SWR 7200

IF (OMF&A.GE,DCNY15,10 SWR 7300

15 PRINT 350, FREQ,W B ) : SWR 7400
S5 FORMAT (1H ,2F10.1,4X,29HNEAR OR ABOVE SINGULARITY SWR 7500
GC T0 %% B SWR 7600

10 CONTINU= SWR 7700
0 45 a=1,4 SWR 7800

X = @AM SwR 7900
Y(1) = v(J) o SWR 8000
Y(2) = Utu) SWR 8100
Y(3) = 8M(J) o SKR 8200
Y(a) = Q(u) SwR 8300
WCAP = =(Y(1)+Y(2)*TAN+®{(ENUWY(S5))/(PleEwHeAwCN®X)))/ (1,0~ SWR 8400

1 ((OSn*X*X)/(CN«DCN))) SWR 8500

K = 0 SWR 8600

20 WCAP = ~(Y(1)+Y(2)*TAN+((ENU*Y(3))/(FlwEwHwA®DCN®*X)))/(1.0" SWR 8700
1 ((0S0#X*X)/(OCN*DCN))) B ) Swk 88090
FO1) = (Y(L)*DSNS(Y(2)/DCNYS(Y(Q)/(PleGrH))e((TAN*Y(3))/(PleGerw SWR 8900

1 A®X)))/(X®USN) SWR 9000
FO2)Y = ((Y(3)/(PTeEwHwA#XaX))~((ENUSGSG*X#WCAP)Y/OCN))/LSN SWR 9100
F(3) = ((PIwEwHwA»OSOwXaX)/DSN)*(WCAP*TAN=Y (D))~ SWR 9200

4 Y(A4)»A*»(DCN/DSN) SWR 9300
F(4) = Plw=wHa SO« (X/DSNI*(WCAP~Y(1)eY(2)*TAN) SWR_ 9400

S = RKILJEW (&,Y,F,X,DX,xX) SWR 9500

iF (8-1.012%,20,30 SWR 9600

25 ST0P SWR 9700
30 CONTINUE B SWR 9800
IF (X=1.0)20,50,50 SWR 9900

506 CONTINuUE o SWR10000
GO TO (70,72473,75)J SWR10100

70 K11 = Y(4) § Bd41 = (Y(2)=wWCAP«TAN)/(A#X) $ B31 = Y(1) § E21 Y(3)SWR10200
GO TO ab SWR10300

72 B12 3 Y(4) § B42 = (Y(2)-WCAP*TAN)/(A*X) $ B32 = Y(1) § B22 = Y(3)SWR10400
GO T0 4% SWR10500

73 B13 = Y(4) $ B43 = (Y(2)-WCAP*TAN)/(A*x) § B33 = Y(1) § B23 = Y(I)SWR10600
GO T0 4» SWR10700

75 B14 ® Y(4) § B44 = (Y(2)-WCAP*TAN)/(A=x) $§ 834 = Y(1) § B24 Y(3)SWR10800
45 CONTINUE SWR10900
A11 ® B11 § A1?2 = B12 § A21 % B21 § A2? a R2?2 SHR11000
A31 ® W*RB31 § A41 = WeB41l § A32 = WeB32 § A42 = WaR42 SWR11100
Al3 &8 -315/W $ A23 = =B23/W % Al4 = -Bi4/W § AP4 ® -824/W SWR11200
A33 B H33 § A34 = B34 $ A43 = R43 § A44 = R44 SWR11300
TM1 = BMS+*wWS(Q SWR11400
TM2 & AleWSQ SWR11500
TM3 & TM1wJEL SWR11600
Cl1 ®» R13+TM3wR{2-TM1+B11l SWR11700
Cl2 =& 814-TM2#B312 SWR11800
C21 = R23+TM3#B22-TMleB21 SWR11900
C22 & B24~TM2#B22 SWR12000
DIT = 333+TMI*B3Z2-TMI«B31 SWR12100
D12 m K34-TM2#B332 SWR12200
D21 ® B43+TM3=B42-TM1vBE41 SWR12300
D22 ® B44-TM2#B842 SWR12400




TM4 = H11#1122-D12+D21

SWR12500

Va2Vl = U22/744 B SWR12600 -
P2Vl = ~)Z1/TM4 ) SWR12700
7011z~ (C11+V2V1«C12%P2VL) /u SWR12800
IM113-(C21*V2V1eCr2*P2V1)/w SWR12900
7012 = 2Q011/V2V} 3 SWR1300¢0
2M12 = [M11/V2Vvi SWR13300
PRINT 335, FREN,W,411,A12,413,414,R11,812,R13,R14 SWK13200
335 FORMAT (F9.1,F10.1,4E12,3,5X,4F12.3) SWR13390

PRINT 340, A21,A22,A23,A24,821,822,8-3,824,A31,A32,A33,A34,851, SWR13400

1 R32,-33,333,.41,A472,A43,A44,R41,R4z,R43,R44 SWR13500
$40 FORMAT (19X,4E12.3,5X,4E12,3) B o SWR13600 77 .
PRINT 370, V2Vv1i,P2Vi,Zm11,2Q11,7M12,2012 SWR13700
370 FORMAT (0 v2/Vl = #,E10.3,« PSI2/V1 5 «,E10,3,« ZM11l = w, SWR13600
1 cif. %, 72311 s *,E10,3,« IMI2 3 «,010,3,% 2012 = «,F17,3///7) SWR13300
B9 F (FRryd=FRQN(1))35,40,40 SwR14000
I5 FRrEG = rRrI+FROX(T) SwR14100
GO To 100w N _ SWR14290
30 CONTINUZ N SWK14300
GG T %d00 SWR14400

END vy, T/ T T

SwR14500
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